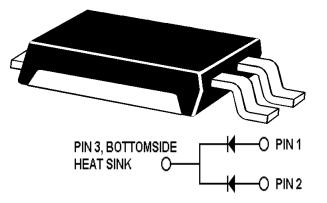


10 A Dual Schottky Barrier Rectifiers

DESCRIPTION

This UPS1040CTe3 in the Powermite3[®] package is a high efficiency centertap dual Schottky rectifier that is also RoHS compliant offering high current/power capabilities previously found only in much larger packages. They are ideal for SMD applications that operate at high frequencies. In addition to its size advantages, the Powermite3[®] package includes a full metallic bottom that eliminates the possibility of solder flux entrapment during assembly and a unique locking tab act as an efficient heat path to the heat-sink mounting. Its innovative design makes this device ideal for use with automatic insertion equipment.


IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

ANI: For the most current data, consult *MICROSEMI*'s website: http://www.microse ABSOLUTE MAXIMUM RATINGS AT 25° C (UNLESS OTHERWISE SPECIFIED)

Rating	Symbol	Value	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V	
RMS Reverse Voltage	V _{R (RMS)}	28	V	
Average Rectified Output Current	l _o	10	А	
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine wave Superimposed on Rated Load@ T _c =90 °C	I _{FSM}	150	A	
Storage Temperature	T _{STG}	-55 to +150	°C	
Junction Temperature	TJ	-55 to +125	°C	

THERMAL CHARACTERISTICS (UNLESS OTHERWISE SPECIFIED)

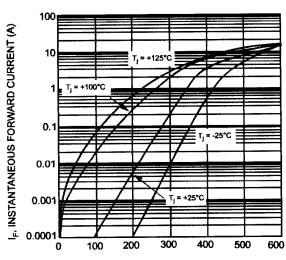
Thermal Resistance (dual device)			
Junctions-to Bottom (Case)	R _{θJC}	2.5	°C/Watt

KEY FEATURES

- Very low thermal resistance package
- Dual center-tap Schottky configuration with common cathode
- RoHS Compliant with e3 suffix part numberGuard-ring-die construction for transient
- Protection
 Efficient heat path with Integral locking bottom metal tab
- Low forward voltage
- Full metallic bottom eliminates flux entrapment
- Compatible with automatic insertion
- Low profile-maximum height of 1mm

	APPLICATIONS/BENEFITS
•	Switching and Regulating Power supplies. Silicon Schottky (hot carrier) rectifier for minimal reverse voltage recovery Elimination of reverse-recovery oscillations to reduce need for EMI filtering Charge Pump Circuits Reduces reverse recovery loss with low I _{RM}
•	Small foot print ■■ 190 X 260 mils (1:1 Actual size) See mounting pad details on pg 5
	MECHANICAL & PACKAGING
•	CASE: Void-free transfer molded thermosetting epoxy compound meeting

- UL94V-0
 FINISH: Annealed matte-Tin plating over copper and readily solderable per MIL-STD-750 method 2026 (consult factory for Tin-Lead plating)
- POLARITY: See figure (left)
- MARKING: S1040CT•
- WEIGHT: 0.072 gram (approx.)
- Package dimension on last page
- Tape & Reel option: 16 mm tape per Standard EIA-481-B, 5000 on 13" reel


UPS1040CTe3

10 A Dual Schottky Barrier Rectifiers

ELECTRICAL PARAMETERS @ 25°C (unless otherwise specified)						
Parameter	Symbol	Conditions	Min	Тур.	Max	Units
Forward Voltage (Note 1)		I _F = 5 A , T _J =25 °C		0.44	0.48	
Per Element	V _F	$I_F = 5 \text{ A}$, $T_J = 100 \text{ °C}$		0.39	0.42	v
	VF	I _F = 10 A , T _J =25 °C I _F = 10 A , T _J =100 °C		0.51 0.50	0.57 0.55	v
Reverse Breakdown Voltage (Note 1)	V _{BR}	I _R = 500 uA	40	0.00	0.00	V
Reverse Current (Note1)		V _R = 35V, T _i = 25 °C		35	150	uA
Per Element	I _R	V _R = 35V, T _j =100 °C		4	10	mA
		V _R = 17.5V, T _j = 25 °C V _R = 17.5V, T _j = 100 °C		15 2	80 5	uA mA
Capacitance Per Element	CT	$V_{R} = 4 V; f = 1 MH_{Z}$		375		pF

Note: 1 Short duration test pulse used to minimize self-heating effect

 $V_{\rm F}$, INSTANTANEOUS FORWARD VOLTAGE (mV) Fig. 1 Typical Forward Characteristics, Per Element

GRAPHS

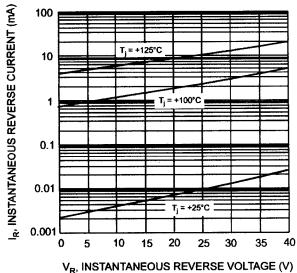
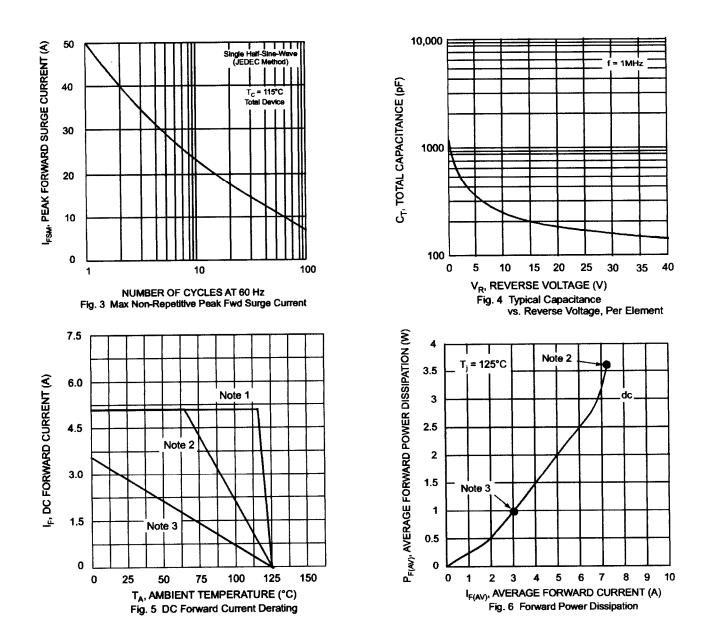
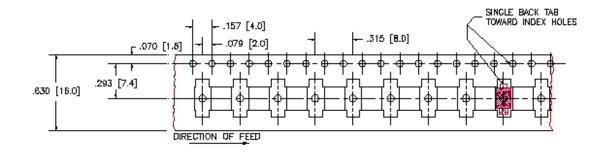
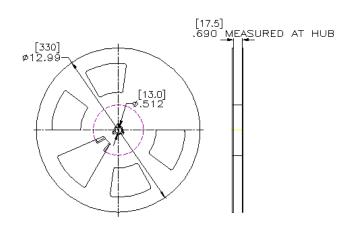



Fig. 2 Typical Reverse Characteristics, Per Element

10 A Dual Schottky Barrier Rectifiers


- NOTE 1: $T_A = T_C$ at case bottom where $R_{\theta JC} = 2.5^{\circ}$ C/W (dual device) and $R_{\theta CA} = 0^{\circ}$ C/W (infinite heat sink).
- NOTE 2: Device mounted on GETEK substrate, 2" x 2", 2 oz. copper , double-sided , cathode pad dimensions 0.75" x 1.0", anode pad dimensions 0.25" x 1.0". R_{0JA} in range of 20-35° C/W.
- NOTE 3: Device mounted on FRA-4 substrate, 2" x 2", 2 oz. copper, single-sided, pad layout R_{θJA} in range of 65°C/W. See mounting pad dimensions on page 5.

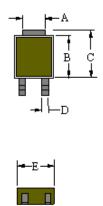

10 A Dual Schottky Barrier Rectifiers

TAPE & REEL

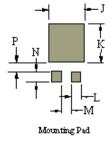
16 mm TAPE

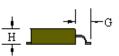
13 INCH REEL

Microsemi



10 A Dual Schottky Barrier Rectifiers


PACKAGE & PAD LAYOUT DIMENSIONS


PACKAGING:

	INCHES	MILLIMETERS
DIM	NOMINAL	NOMINAL
Α	0.070	1.778
В	0.173	4.392
С	0.200	5.080
D	0.035	0.889
Е	0.160	4.064
F	0.072	1.829
G	0.056	1.422
Н	0.044	1.118
J	0.190	4.826
K	0.210	5.344
L	0.038	0.965
Μ	0.034	0.864
Ν	0.030	0.762
Р	0.030	0.762

F

www.Microsemi.com

10 A Dual Schottky Barrier Rectifiers

NOTES:	
	NO
	NOTES

UPS1040CTe3

www.Microsemi.com